2019 Machine Learning Winter School

Dates: December 18-20, 2019 Place: High-1 Resort

Program Schedule

Time	December 18 (Wed)	December	19 (Thu)	December 20 (Fri)
08:30-10:00		[nVidia 다중데이터타입 1] TensorFlow 을 활용한 이미지분할 김영곤 (nVidia) ※ 노트북 지참 必	[Intel 드론 1] 인공지능 Overview (인텔 이인구 전무)	[데이터 분석 1] 시각화를 도구를 이용한 SNS 데이터 분석 (11번가 강윤정 팀장) ※ 노트북 지참 必
10:00-10:15		Brea	ak	Break
10:15-12:00		[nVidia 다중데이터타입 2] TensorFlow을 활용한 텍스트생성 김영곤 (nVidia) ※ 노트북 지참 必	[Intel 드론 2] 드론과 OpenVINO를 이용한 딥러닝 인퍼런스 (인텔 이인구 전무)	[데이터 분석 2] Power BI를 이용한 건강검진 데이터 분석 (인텔코리아 이주석 전무) ※ 노트북 지참 必
11:45-13:00	Registration	Lunch		
13:00-13:15	개 회			
13:15-15:30	[nVidia 자연어처리 1] 자연어 처리 개요 및 워드 임베딩 (nVidia 유현곤 부장) ※ 노트북 지참 必	[nVidia 다중데이터타입 3] 이미지 및 영상 캡셔닝 김영곤 (nVidia) ※ 노트북 지참 必	[Intel 드론 3] 딥러닝 모델 트레이닝 (인텔 이인구 전무)	
15:30-15:45	Break	Brea	ak	
15:45-18:00	[nVidia 자연어처리 2] 텍스트에서 특징을 추출하는 텍스트 분류 (nVidia 유현곤 부장)	[사례발표] 정유성 교수 (KAIST) Inverse materials design using machine learning 신원용 교수 (연세대학교) 소셜 네트워크와 사물인터넷에서의		
	※ 노트북 지참 必	머신러닝 기: 윤동국 대표 감각 장애를	도 (위즈진)	
18:00-19:00	Dinner	Dinner		
19:00-21:00	[nVidia 자연어처리 3] 텍스트를 번역하는 신경 기계 번역 (nVidia 유현곤 부장) ※ 노트북 지참 必	(휴 식)		

강의 내용 소개 December 18 (Wed)/ nVidia <mark>강의</mark>

개요	본 강의에서는 자연어 처리(NLP)를 활용한 텍스트 입력을 이해하기 위한 딥러닝 기법에 대해 배울 수 있습니다. 참가자는 널리 사용되는 딥러닝 도구, 프레임워크 및 워크플로우를 활용하여 클라우드에 구성된 GPU 가속 워크스테이션을 통해 신경망 모델을 훈련하게 됩니다. 본 과정에서는 텍스트 분류를 위한 신경 네트워크 훈련, 주어진 텍스트 문서에서 특징을 추출하기 위한 언어 스타일 모델 구축 및 텍스트를 다른 언어로 변환하기 위한 신경 기계 번역 모델을 만드는 기술을 학습합니다. ※ 전제조건: 신경망과 Python 프로그래밍에 대한 기초적인 활용 경험 및 언어 ※ 자격증: 워크숍의 성공적인 수료로 NVIDIA DLI 자격증을 받기 위해 참가자들은 학습 주제에 대한 역량을 평가하는 과제가 주어집니다.		
시간	제목	내용	강사
13:15 – 15:30	자연어 처리 개요 및 워드 임베딩	• NLP 개요 및 딥러닝을 활용한 문제 해결 방법 • word2vec 알고리즘을 활용한 워드 임베딩과 같은 분산된 데이터 표현을 다루며 훈련을 통 해 텍스트 분류를 포함한 다양한 문제에 워드 임베딩을 활용할 수 있게 됩니다.	nVidiaA에서 10년간 Solution Architect로 근 무하며 국내 산학연의
15:45 – 18:00	임베딩을 활용하여 텍스트 집합에서 특징을 추출하는 텍스트 분류	 텍스트 분류를 사용하여 작자 미상 문서 집합의 작성자를 결정 훈련된 텍스트 분류 모델을 활용하여 주어진텍스트 문서의 작성자를 감별 	HPC 기반 CUDA 병렬 프로그래밍 기술을 지원 nVidia AI Technology
19:00 – 21:00	다른 언어로 텍스트를 번역하는 신경 기계 번역	 사람이 읽을 수 있는 텍스트를 기계가 읽을 수 있는 형식으로 변환하는 기술 긴 문자열의 경우 주의 기제 메커니즘을 활용 하여 결과를 개선하는 방법 학습 	Center Korea에서 음성 모델을 중심으로 Con- versational AI 모델 개선 연구를 진행

강의 내용 소개 December 19 (Thu)/ nVidia <mark>강의</mark>

개요	본 강의에서는 여러 데이터 유형과 관련된 문제에 대한 딥러닝 기법을 익히기 위한 핸즈온 실습이 진행됩니다. 딥러닝에 대한 간단한 소개 후, 참가자는 영상 분할, 문장 생성, 이미지 및 비디오 캡션을 위한 딥러닝 응용프로그램 구축으로 학습을 할 수 있으며 동시에 관련 컴퓨터 비전, 신경망 및 자연인어 처리 개념을 학습할 수 있습니다. 워크숍 수료와 동시에 참가자는 딥러닝이 적용될 수 있는 광범위한 문제를 다룰 수 있게 됩니다. ※ 전제조건: '컴퓨터 비전을 위한 딥러닝 기초' DLI 과정 또는 이에 준하는 과정을 성공적으로 이수, Python(함수와 변수) 기초 및 뉴럴 네트워크 훈련에 대한 사전 경험 요구 ※ 자격증: 워크숍의 성공적인 수료로 NVIDIA DLI 자격증을 받기 위해 참가자들은 학습 주제에 대한 역량을 평가하는 과제가 주어집니다.		
시간	제목	내용	강사
08:30 - 10:00	콘텐츠 개요 및 딥러닝 이론 소개	· 딥러닝에 대한 소개 및 딥러닝이 유용한 상황, 주요 용어, 산업 동향 및 도전 과제들을 소개	
08:30 - 10:00	TensorFlow을 활용한 이미지분할	· TensorBoard 및 Tensor Flow Python API와 같은 도구를 활용하여 심장 일부를 촬영한 MRI 영상으로 실습	김영곤 (nVidia)
10:15 – 12:00	TensorFlow을 활용한 텍스트생성	 RNN (Recurrent Neural Network)을 훈련하여 이미지와 텍스트를 이해 MSCOCO (Microsoft Common Objects in Context) 데이터 집합을 활용하여 문장의 다음 단어를 예측하는 실습 및 성능 향상 방법 	NVIDIA DLI Ambassador Certified Instructor 울산대학교 의과대학
13:15 - 15:30	이미지 및 영상 캡셔닝	 컴퓨터 비전과 자연어 처리의 결합을 통한 장면 묘사 연결 및/또는 평균화를 통해 다중 네트워크 (CNN 및 RNN)의 출력을 조합하여 Raw 픽셀데이터에서 이미지 설명을 생성하는 모델 훈련 	바이오메디컬 박사과정

강의 내용 소개 December 19 (Thu)/ Intel 강의

시간	제목	내용	강사
08:30 - 10:00	인공지능 Overview	· 왜 인공지능이 필요하고, 인공지능 무엇인 지, 어떤 영역에 적용되는지 · 인공지능을 위한 HW/SW들	이인구 전무 (인텔코리아)
10:15 – 12:00	드론과 OpenVINO를 이용한 딥러닝 인퍼런스	 · 딥러닝 인퍼런스를 위한 순서 및 데이터 흐름을 이해 · OpenVINO를 이용해서 다양한 HW에서 이미지를 추론 · 드론을 이용해서 실시간으로 추론 	2000년부터 인텔에서 PC 및 Server 개발 기술지원을 해왔고, 2015년부터 인텔의 인공지능 솔루션을 소개하 고 개발자 및 학생들을 대 상으로 인공지능 샘플 코드
13:00 – 15:15	딥러닝 모델 트레이닝	 · 딥러닝 모델 트레이닝을 위한 데이터 모으기 · 모델 트레이닝을 위한 순서와 모델 트레이닝 성능 향상 	를 교육하고 각종 경진대회 를 진행하고 있습니다.

강의 내용 소개 December 20 (Fri)/ Intel 강의

시간	제목	내용	강사
08:30 - 10:00	글로벌 업체 데이터 분석 시각화 사례 및 연구 발표 시각화를 도구를 이용한 SNS 데이터 분석	 데이터 분석은 다양한 분야에서 적용되고 있음 특히 시각화는 데이터 분석에 대한 결과를 보다 직관적으로 보여주고 인사이트를 빠르게 도출하는 도구로서 사용되고 있음 실제 글로벌 기업에서의 사례를 통해 어떻게 시각화가 적용되고 있는지를 확인하고, SNS 분석 방안에 대해서도 소개 	강윤정 팀장 (11번가)
10:15 – 12:00	Power BI를 이용한 건강검진 데이터 분석 및 인사이트 도출 방안	 데이터 분석을 시각화 도구인 power BI를 이용해서 실습 건강보험공단에서 공개한 건강검진데이터를 분석하여 인사이트를 도출 치매 환자 데이터 예측 모델을 powerBI와 연계된 파이썬을 이용해서 실습 진행 	이주석 전무 (인텔코리아) 치매환자 데이터를 분석하 고 데이터 전처리에 관련된 연구를 진행하였음